The following content is taken from http://www.ias.u-psud.fr/pperso/aboucaud/python/cheatsheet.html
This cheat sheet should serve as a short refresher to everybody who hasn't used Python for some time.
a = 2 # integer
b = 5.0 # float
c = 8.3e5 # exponential
d = 1.5 + 0.5j # complex
e = 4 > 5 # boolean
f = 'word' # string
a = ['red', 'blue', 'green'] # manually initialization
b = list(range(5)) # initialization through a function
c = [nu**2 for nu in b] # initialize through list comprehension
d = [nu**2 for nu in b if nu < 3] # list comprehension with condition
e = c[0] # access element
f = c[1:2] # access a slice of the list
g = ['re', 'bl'] + ['gr'] # list concatenation
h = ['re'] * 5 # repeat a list
['re', 'bl'].index('re') # returns index of 're'
're' in ['re', 'bl'] # true if 're' in list
sorted([3, 2, 1]) # returns sorted list
z = ['red'] + ['green', 'blue'] # list concatenation
a = {'red': 'rouge', 'blue': 'bleu', 'green': 'vert'} # dictionary
b = a['red'] # translate item
c = [value for key, value in a.items()] # loop through contents
d = a.get('yellow', 'no translation found') # return default
a = 'red' # assignment
char = a[2] # access individual characters
'red ' + 'blue' # string concatenation
'1, 2, three'.split(',') # split string into list
'.'.join(['1', '2', 'three']) # concatenate list into string
a = 2 # assignment
b = [2,3] # assign a list
a += 1 # change and assign, try also `*=` and `/=`
3 + 2 # addition
3 / 2 # integer division (python2) or float division (python3)
3 // 2 # integer division
3 * 2 # multiplication
3 ** 2 # exponent
3 % 2 # remainder
abs(-3) # absolute value
1 == 1 # equal
2 > 1 # larger
2 < 1 # smaller
1 != 2 # not equal
1 != 2 and 2 < 3 # logical AND
1 != 2 or 2 < 3 # logical OR
not 1 == 2 # logical NOT
a in b # test if a is in b
a is b # test if objects point to the same memory (id)
# if/elif/else
a, b = 1, 2
if a + b == 3:
print ('True')
elif a + b == 1:
print ('False')
else:
print ('?')
# for
a = ['red', 'blue', 'green']
for color in a:
print (color)
# while
number = 1
while number < 10:
print (number)
number += 1
# break
number = 1
while True:
print (number)
number += 1
if number > 10:
break
# continue
for i in range(20):
if i % 2 == 0:
continue
print (i)
# Function
def myfunc(a1, a2):
return a1 * a2
a1, a2 = 4, 5
x = myfunc(a1, a2)
# Class
class Point(object):
def __init__(self, x):
self.x = x
def __call__(self):
print (self.x)
x = Point(3)
# Generators
def firstn(n):
num = 0
while num < n:
yield num
num += 1
# consume the generator with list comprehension
x = [i for i in firstn(10)]
# Decorators
class myDecorator(object):
def __init__(self, f):
self.f = f
def __call__(self):
print ("call")
self.f()
@myDecorator
def my_funct():
print ('func')
my_funct()
<object>? # Information about the object
<object>.<TAB> # tab completion
# measure runtime of a function:
%timeit range(1000)
100000 loops, best of 3: 7.76 us per loop
# run scripts and debug
%run
%run -d # run in debug mode
%run -t # measures execution time
%run -p # runs a profiler
%debug # jumps to the debugger after an exception
%pdb # run debugger automatically on exception
# examine history
%history
%history ~1/1-5 # lines 1-5 of last session
# run shell commands
!make # prefix command with "!"
# clean namespace
%reset
n # execute next line
import numpy as np
np.array([2, 3, 4]) # direct initialization
np.empty(20, dtype=np.float32) # single precision array with 20 entries
np.zeros(200) # initialize 200 zeros
np.ones((3,3), dtype=np.int32) # 3 x 3 integer matrix with ones
np.eye(200) # ones on the diagonal
np.zeros_like(a) # returns array with zeros and the shape of a
np.linspace(0., 10., 100) # 100 points from 0 to 10
np.arange(0, 100, 2) # points from 0 to <100 with step width 2
np.logspace(-5, 2, 100) # 100 log-spaced points between 1e-5 and 1e2
a = np.array([[2, 3], [4, 5]])
np.copy(a) # copy array to new memory
np.fromfile(fname/object, dtype=np.float32, count=5) # read binary data from file
np.loadtxt(fname/object, skiprows=2, delimiter=',') # read ascii data from file
a.shape # a tuple with the lengths of each axis
len(a) # length of axis 0
a.ndim # number of dimensions (axes)
a.sort(axis=1) # sort array along axis
a.flatten() # collapse array to one dimension
a.conj() # return complex conjugate
a.astype(np.int16) # cast to integer
np.argmax(a, axis=0) # return index of maximum along a given axis
np.cumsum(a) # return cumulative sum
np.any(a) # True if any element is True
np.all(a) # True if all elements are True
np.argsort(a, axis=1) # return sorted index array along axis
a = np.arange(100) # initialization with 0 - 99
a[: 3] = 0 # set the first three indices to zero
a[1: 5] = 1 # set indices 1-4 to 1
start, stop, step = 10, 20, 2
a[start:stop:step] # general form of indexing/slicing
a[None, :] # transform to column vector
a[[1, 1, 3, 8]] # return array with values of the indices
a = a.reshape(10, 10) # transform to 10 x 10 matrix
a.T # return transposed view
np.transpose(a, (1, 0)) # transpose array to new axis order
a[a < 2] # returns array that fulfills element-wise condition
a, b = np.arange(100), 6 * np.arange(1, 101)
a < 2 # returns array with boolean values
np.logical_and(a < 2, b > 10) # element-wise logical and
np.logical_or(a < 2, b > 10) # element-wise logical or
~a # invert boolean array
np.invert(a) # invert boolean array
y, x = np.arange(10), np.arange(1, 11)
a * 5 # multiplication with scalar
a + 5 # addition with scalar
a + b # addition with array b
a / b # division with b (np.NaN for division by zero)
np.exp(a) # exponential (complex and real)
np.power(a,b) # a to the power b
np.sin(a) # sine
np.cos(a) # cosine
np.arctan2(y, x) # arctan(y/x)
np.arcsin(x) # arcsin
np.radians(a) # degrees to radians
np.degrees(a) # radians to degrees
np.var(a) # variance of array
np.std(a, axis=0) # standard deviation
a, b = np.array([[2, 3], [4, 5]]), np.array([[20, 30], [40, 50]])
np.dot(a, b) # inner matrix product: a_mi b_in
np.einsum('ik,kl->il', a, b) # einstein summation convention
np.sum(a, axis=1) # sum over axis 1
np.abs(a) # return array with absolute values
a[None, :] + b[:, None] # outer sum
a[None, :] * b[:, None] # outer product
np.outer(a, b) # outer product
np.sum(a * a.T) # matrix norm
np.trapz(y, x=None, dx=1.0, axis=0) # integrate along axis 0
np.interp(x=2.5, xp=[1, 2, 3], fp=[3, 2, 0]) # interpolate function xp, yp at points x
np.fft.fft(y) # complex fourier transform of y
freqs = np.fft.fftfreq(len(y)) # fft frequencies for a given length
np.fft.fftshift(freqs) # shifts zero frequency to the middle
np.fft.rfft(y) # real fourier transform of y
np.fft.rfftfreq(len(y)) # real fft frequencies for a given length
a=3.56
np.ceil(a) # rounds to nearest upper int
np.floor(a) # rounds to nearest lower int
np.round(a) # rounds to neares int
np.random.normal(loc=0, scale=2, size=100) # 100 normal distributed random numbers
np.random.seed(23032) # resets the seed value
np.random.rand(200) # 200 random numbers in [0, 1)
np.random.uniform(1, 30, 200) # 200 random numbers in [1, 30)
np.random.randint(1, 15, 300) # 300 random integers between [1, 15]
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(5, 2), facecolor='black') # initialize figure
ax = fig.add_subplot(3, 2, 2) # add second subplot in a 3 x 2 grid
fig, axes = plt.subplots(5, 2, figsize=(5, 5)) # return fig and array of axes in a 5 x 2 grid
ax = fig.add_axes(left=.3, bottom=.1, width=.6, height=.8) # manually add axes at a certain position
fig.suptitle('title') # big figure title
fig.subplots_adjust(bottom=0.1,
right=0.8,
top=0.9,
wspace=0.2,
hspace=0.5) # adjust subplot positions
fig.tight_layout(pad=0.1,
h_pad=0.5,
w_pad=0.5,
rect=None) # adjust subplots to fit perfectly into fig
ax.set_xlabel() # set xlabel
ax.set_ylabel() # set ylabel
ax.set_xlim(1, 2) # sets x limits
ax.set_ylim(3, 4) # sets y limits
ax.set_title('blabla') # sets the axis title
ax.set(xlabel='bla') # set multiple parameters at once
ax.legend(loc='upper center') # activate legend
ax.grid(True, which='both') # activate grid
bbox = ax.get_position() # returns the axes bounding box
bbox.x0 + bbox.width # bounding box parameters
ax.plot(x,y, '-o', c='red', lw=2, label='bla') # plots a line
ax.scatter(x,y, s=20, c=color) # scatter plot
ax.pcolormesh(xx,yy,zz, shading='gouraud') # fast colormesh function
ax.colormesh(xx,yy,zz, norm=norm) # slower colormesh function
ax.contour(xx,yy,zz, cmap='jet') # contour line plot
ax.contourf(xx,yy,zz, vmin=2, vmax=4) # filled contours plot
n, bins, patch = ax.hist(x, 50) # histogram
ax.imshow(matrix, origin='lower', extent=(x1, x2, y1, y2)) # show image
ax.specgram(y, FS=0.1, noverlap=128, scale='linear') # plot a spectrogram