This section is meant for the more advanced user. In it we will discuss how you can create your own interface, i.e. wrapping your own code, so that you can use it with Nipype.
In this notebook we will show you:
But before we can start, let's recap again the difference between interfaces and workflows.
Interfaces are the building blocks that solve well-defined tasks. We solve more complex tasks by combining interfaces with workflows:
Interfaces | Workflows |
---|---|
Wrap *unitary* tasks | Wrap *meta*-tasks
|
Keep track of the inputs and outputs, and check their expected types | Do not have inputs/outputs, but expose them from the interfaces wrapped inside |
Do not cache results (unless you use [interface caching](advanced_interfaces_caching.ipynb)) | Cache results |
Run by a nipype plugin | Run by a nipype plugin |
For this notebook, we'll work on the following T1-weighted dataset located in /data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz
:
from nilearn.plotting import plot_anat
%matplotlib inline
plot_anat('/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz', dim=-1);
BET
¶Nipype offers a series of Python interfaces to various external packages (e.g. FSL, SPM or FreeSurfer) even if they themselves are written in programming languages other than python. Such interfaces know what sort of options their corresponding tool has and how to execute it.
To illustrate why interfaces are so useful, let's have a look at the brain extraction algorithm BET from FSL. Once in its original framework and once in the Nipype framework.
The tool can be run directly in a bash shell using the following command line:
%%bash
bet /data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz \
/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w_bet.nii.gz
... which yields the following:
plot_anat('/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w_bet.nii.gz', dim=-1);
Using nipype, the equivalent is a bit more verbose:
from nipype.interfaces.fsl import BET
skullstrip = BET(in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz')
res = skullstrip.run()
print(res.outputs.out_file)
Now we can verify that the result is exactly the same as before. Please note that, since we are using a Python environment, we use the result of the execution to point our plot_anat
function to the output image of running BET:
plot_anat(res.outputs.out_file, dim=-1);
Nipype is designed to ease writing interfaces for new software. Nipype interfaces are designed with three elements that are intuitive:
InputSpec
)OutputSpec
)run()
method we've seen before for BET, and which puts together inputs and outputs.from nipype.interfaces.base import CommandLine
CommandLine.help()
As a quick example, let's wrap bash's ls
with Nipype:
nipype_ls = CommandLine('ls', args='-lh', terminal_output='allatonce')
Now, we have a Python object nipype_ls
that is a runnable nipype interface. After execution, Nipype interface returns a result object. We can retrieve the output of our ls
invocation from the result.runtime
property:
result = nipype_ls.run()
print(result.runtime.stdout)
%%bash
antsTransformInfo /home/neuro/nipype_tutorial/notebooks/scripts/transform.tfm
antsTransformInfo
.For the first item of this roadmap, we will just need to derive a new Python class from the nipype.interfaces.base.CommandLine
base. To indicate the appropriate command line, we set the member _cmd
:
class TransformInfo(CommandLine):
_cmd = 'antsTransformInfo'
This is enough to have a nipype compatible interface for this tool:
TransformInfo.help()
However, the args
argument is too generic and does not deviate much from just running it in bash, or directly using subprocess.Popen
. Let's define the inputs specification for the interface, extending the nipype.interfaces.base.CommandLineInputSpec
class.
The inputs are implemented using the Enthought traits package. For now, we'll use the File
trait extension of nipype:
from nipype.interfaces.base import CommandLineInputSpec, File
class TransformInfoInputSpec(CommandLineInputSpec):
in_file = File(exists=True, mandatory=True, argstr='%s',
position=0, desc='the input transform file')
Some settings are done for this File
object:
exists=True
indicates Nipype that the file must exist when it is setmandatory=True
checks that this input was set before running because the program would crash otherwiseargstr='%s'
indicates how this input parameter should be formattedposition=0
indicates that this is the first positional argumentWe can now decorate our TransformInfo
core class with its input, by setting the input_spec
member:
class TransformInfo(CommandLine):
_cmd = 'antsTransformInfo'
input_spec = TransformInfoInputSpec
Our interface now has one mandatory input, and inherits some optional inputs from the CommandLineInputSpec
:
TransformInfo.help()
One interesting feature of the Nipype interface is that the underlying command line can be checked using the object property cmdline
. The command line can only be built when the mandatory inputs are set, so let's instantiate our new Interface for the first time, and check the underlying command line:
my_info_interface = TransformInfo(in_file='/home/neuro/nipype_tutorial/notebooks/scripts/transform.tfm')
print(my_info_interface.cmdline)
Nipype will make sure that the parameters fulfill their prescribed attributes. For instance, in_file
is mandatory. An error is issued if we build the command line or try to run this interface without it:
try:
TransformInfo().cmdline
except(ValueError) as err:
print('It crashed with...')
print("ValueError:", err)
else:
raise
It will also complain if we try to set a non-existent file:
try:
my_info_interface.inputs.in_file = 'idontexist.tfm'
except(Exception) as err:
print('It crashed with...')
print("TraitError:", err)
else:
raise
The outputs are defined in a similar way. Let's define a custom output for our interface which is a list of three float element. The output traits are derived from a simpler base class called TraitedSpec
. We also import the two data representations we need List
and Float
:
from nipype.interfaces.base import TraitedSpec, traits
class TransformInfoOutputSpec(TraitedSpec):
translation = traits.List(traits.Float, desc='the translation component of the input transform')
class TransformInfo(CommandLine):
_cmd = 'antsTransformInfo'
input_spec = TransformInfoInputSpec
output_spec = TransformInfoOutputSpec
And now, our new output is in place:
TransformInfo.help()
If we run the interface, we'll be able to see that this tool only writes some text to the standard output, but we just want to extract the Translation
field and generate a Python object from it.
my_info_interface = TransformInfo(in_file='/home/neuro/nipype_tutorial/notebooks/scripts/transform.tfm',
terminal_output='allatonce')
result = my_info_interface.run()
print(result.runtime.stdout)
We need to complete the functionality of the run()
member of our interface to parse the standard output. This is done extending its _run_interface()
member.
When we define outputs, generally they need to be explicitly wired in the _list_outputs()
member of the core class. Let's see how we can complete those:
class TransformInfo(CommandLine):
_cmd = 'antsTransformInfo'
input_spec = TransformInfoInputSpec
output_spec = TransformInfoOutputSpec
def _run_interface(self, runtime):
import re
# Run the command line as a natural CommandLine interface
runtime = super(TransformInfo, self)._run_interface(runtime)
# Search transform in the standard output
expr_tra = re.compile('Translation:\s+\[(?P<translation>[0-9\.-]+,\s[0-9\.-]+,\s[0-9\.-]+)\]')
trans = [float(v) for v in expr_tra.search(runtime.stdout).group('translation').split(', ')]
# Save it for later use in _list_outputs
setattr(self, '_result', trans)
# Good to go
return runtime
def _list_outputs(self):
# Get the attribute saved during _run_interface
return {'translation': getattr(self, '_result')}
Let's run this interface (we set terminal_output='allatonce'
to reduce the length of this manual, default would otherwise be 'stream'
):
my_info_interface = TransformInfo(in_file='/home/neuro/nipype_tutorial/notebooks/scripts/transform.tfm',
terminal_output='allatonce')
result = my_info_interface.run()
Now we can retrieve our outcome of interest as an output:
result.outputs.translation
CommandLine
interface¶Now putting it all togehter, it looks as follows:
from nipype.interfaces.base import (CommandLine, CommandLineInputSpec,
TraitedSpec, traits, File)
class TransformInfoInputSpec(CommandLineInputSpec):
in_file = File(exists=True, mandatory=True, argstr='%s', position=0,
desc='the input transform file')
class TransformInfoOutputSpec(TraitedSpec):
translation = traits.List(traits.Float, desc='the translation component of the input transform')
class TransformInfo(CommandLine):
_cmd = 'antsTransformInfo'
input_spec = TransformInfoInputSpec
output_spec = TransformInfoOutputSpec
def _run_interface(self, runtime):
import re
# Run the command line as a natural CommandLine interface
runtime = super(TransformInfo, self)._run_interface(runtime)
# Search transform in the standard output
expr_tra = re.compile('Translation:\s+\[(?P<translation>[0-9\.-]+,\s[0-9\.-]+,\s[0-9\.-]+)\]')
trans = [float(v) for v in expr_tra.search(runtime.stdout).group('translation').split(', ')]
# Save it for later use in _list_outputs
setattr(self, '_result', trans)
# Good to go
return runtime
def _list_outputs(self):
# Get the attribute saved during _run_interface
return {'translation': getattr(self, '_result')}
my_info_interface = TransformInfo(in_file='/home/neuro/nipype_tutorial/notebooks/scripts/transform.tfm',
terminal_output='allatonce')
result = my_info_interface.run()
result.outputs.translation
CommandLine
wrapper¶For more standard neuroimaging software, generally we will just have to specify simple flags, i.e. input and output images and some additional parameters. If that is the case, then there is no need to extend the run()
method.
Let's look at a quick, partial, implementation of FSL's BET:
from nipype.interfaces.base import CommandLineInputSpec, File, TraitedSpec
class CustomBETInputSpec(CommandLineInputSpec):
in_file = File(exists=True, mandatory=True, argstr='%s', position=0, desc='the input image')
mask = traits.Bool(mandatory=False, argstr='-m', position=2, desc='create binary mask image')
# Do not set exists=True for output files!
out_file = File(mandatory=True, argstr='%s', position=1, desc='the output image')
class CustomBETOutputSpec(TraitedSpec):
out_file = File(desc='the output image')
mask_file = File(desc="path/name of binary brain mask (if generated)")
class CustomBET(CommandLine):
_cmd = 'bet'
input_spec = CustomBETInputSpec
output_spec = CustomBETOutputSpec
def _list_outputs(self):
# Get the attribute saved during _run_interface
return {'out_file': self.inputs.out_file,
'mask_file': self.inputs.out_file.replace('brain', 'brain_mask')}
my_custom_bet = CustomBET()
my_custom_bet.inputs.in_file = '/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz'
my_custom_bet.inputs.out_file = 'sub-01_T1w_brain.nii.gz'
my_custom_bet.inputs.mask = True
result = my_custom_bet.run()
plot_anat(result.outputs.out_file, dim=-1);
Python
interface¶CommandLine
interface is great, but my tool is already in Python - can I wrap it natively?
Sure. Let's solve the following problem: Let's say we have a Python function that takes an input image and a list of three translations (x, y, z) in mm, and then writes a resampled image after the translation has been applied:
def translate_image(img, translation, out_file):
import nibabel as nb
import numpy as np
from scipy.ndimage.interpolation import affine_transform
# Load the data
nii = nb.load(img)
data = nii.get_data()
# Create the transformation matrix
matrix = np.eye(3)
trans = (np.array(translation) / nii.header.get_zooms()[:3]) * np.array([1.0, -1.0, -1.0])
# Apply the transformation matrix
newdata = affine_transform(data, matrix=matrix, offset=trans)
# Save the new data in a new NIfTI image
nb.Nifti1Image(newdata, nii.affine, nii.header).to_filename(out_file)
print('Translated file now is here: %s' % out_file)
Let's see how this function operates:
orig_image = '/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz'
translation = [20.0, -20.0, -20.0]
translated_image = 'translated.nii.gz'
# Let's run the translate_image function on our inputs
translate_image(orig_image,
translation,
translated_image)
Now that the function was executed, let's plot the original and the translated image.
plot_anat(orig_image, dim=-1);
plot_anat('translated.nii.gz', dim=-1);
Perfect, we see that the translation was applied.
Function
interface¶Don't reinvent the wheel if it's not necessary. If like in this case, we have a well-defined function we want to run with Nipype, it is fairly easy to solve it with the Function
interface:
from nipype.interfaces.utility import Function
my_python_interface = Function(
input_names=['img', 'translation', 'out_file'],
output_names=['out_file'],
function=translate_image
)
The arguments of translate_image
should ideally be listed in the same order and with the same names as in the signature of the function. The same should be the case for the outputs. Finally, the Function
interface takes a function
input that is pointed to your python code.
Note: The inputs and outputs do not pass any kind of conformity checking: the function node will take any kind of data type for their inputs and outputs.
There are some other limitations to the Function
interface when used inside workflows. Additionally, the function must be totally self-contained, since it will run with no global context. In practice, it means that all the imported modules and variables must be defined within the context of the function.
For more, check out the Function Node notebook.
Back to our Function
interface. You can run it as any other interface object of Nipype:
# Set inputs
my_python_interface.inputs.img = '/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz'
my_python_interface.inputs.translation = [-35.0, 35.0, 35.0]
my_python_interface.inputs.out_file = 'translated_functioninterface.nii.gz'
# Run the interface
result = my_python_interface.run()
# Plot the result
plot_anat('translated_functioninterface.nii.gz', dim=-1);
Python
interface¶Now, we face the problem of interfacing something different from a command line. Therefore, the CommandLine
base class will not help us here. The specification of the inputs and outputs, though, will work the same way.
Let's start from that point on. Our Python function takes in three inputs: (1) the input image, (2) the translation and (3) an output image.
The specification of inputs and outputs must be familiar to you at this point. Please note that now, input specification is derived from BaseInterfaceInputSpec
, which is a bit thinner than CommandLineInputSpec
. The output specification can be derived from TraitedSpec
as before:
from nipype.interfaces.base import BaseInterfaceInputSpec, File, TraitedSpec
class TranslateImageInputSpec(BaseInterfaceInputSpec):
in_file = File(exists=True, mandatory=True, desc='the input image')
out_file = File(mandatory=True, desc='the output image') # Do not set exists=True !!
translation = traits.List([50.0, 0.0, 0.0], traits.Float, usedefault=True,
desc='the translation component of the input transform')
class TranslateImageOutputSpec(TraitedSpec):
out_file = File(desc='the output image')
Similarily to the change of base class for the input specification, the core of our new interface will derive from BaseInterface
instead of CommandLineInterface
:
from nipype.interfaces.base import BaseInterface
class TranslateImage(BaseInterface):
input_spec = TranslateImageInputSpec
output_spec = TranslateImageOutputSpec
At this point, we have defined a pure python interface but it is unable to do anything because we didn't implement a _run_interface()
method yet.
TranslateImage.help()
What happens if we try to run such an interface without specifying the _run_interface()
function?
will_fail_at_run = TranslateImage(
in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz',
out_file='translated.nii.gz')
try:
result = will_fail_at_run.run()
except(NotImplementedError) as err:
print('It crashed with...')
print("NotImplementedError:", err)
else:
raise
So, let's implement the missing part. As we would imagine, this needs to be very similar to what we did before with the TransformInfo
interface:
class TranslateImage(BaseInterface):
input_spec = TranslateImageInputSpec
output_spec = TranslateImageOutputSpec
def _run_interface(self, runtime):
# Call our python code here:
translate_image(
self.inputs.in_file,
self.inputs.translation,
self.inputs.out_file
)
# And we are done
return runtime
If we run it know, our interface will get further:
half_works = TranslateImage(
in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz',
out_file='translated_nipype.nii.gz')
try:
result = half_works.run()
except(NotImplementedError) as err:
print('It crashed with...')
print("NotImplementedError:", err)
else:
raise
... but still, it crashes becasue we haven't specified any _list_outputs()
method. I.e. our python function is called, but the interface crashes when the execution arrives to retrieving the outputs.
Let's fix that:
from nipype.interfaces.base import BaseInterfaceInputSpec, BaseInterface, File, TraitedSpec
class TranslateImageInputSpec(BaseInterfaceInputSpec):
in_file = File(exists=True, mandatory=True, desc='the input image')
out_file = File(mandatory=True, desc='the output image') # Do not set exists=True !!
translation = traits.List([50.0, 0.0, 0.0], traits.Float, usedefault=True,
desc='the translation component of the input transform')
class TranslateImageOutputSpec(TraitedSpec):
out_file = File(desc='the output image')
class TranslateImage(BaseInterface):
input_spec = TranslateImageInputSpec
output_spec = TranslateImageOutputSpec
def _run_interface(self, runtime):
# Call our python code here:
translate_image(
self.inputs.in_file,
self.inputs.translation,
self.inputs.out_file
)
# And we are done
return runtime
def _list_outputs(self):
return {'out_file': self.inputs.out_file}
Now, we have everything together. So let's run it and visualize the output file.
this_works = TranslateImage(
in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz',
out_file='translated_nipype.nii.gz')
result = this_works.run()
plot_anat(result.outputs.out_file, dim=-1);
MATLAB
interface¶Last but not least, let's take a look at how we would create a MATLAB
interface. For this purpose, let's say we want to run some matlab code that counts the number of voxels in an MRI image with intensity larger than zero. Such a value could give us an estimation of the brain volume (in voxels) of a skull-stripped image.
In MATLAB
, our code looks as follows:
load input_image.mat;
total = sum(data(:) > 0)
The following example uses scipy.io.savemat
to convert the input image to MATLAB
format. Once the file is loaded we can quickly extract the estimated total volume.
Note: For the purpose of this example, we will be using the freely available MATLAB
alternative Octave
. But the implementation of a MATLAB
interface will be identical.
As before, we need to specify an InputSpec
and an OutputSpec
class. The input class will expect a file
as an input and the script
containing the code that we would like to run, and the output class will give us back the total volume
.
In the context of a MATLAB
interface, this is implemented as follows:
from nipype.interfaces.base import (CommandLine, traits, TraitedSpec,
BaseInterface, BaseInterfaceInputSpec, File)
class BrainVolumeMATLABInputSpec(BaseInterfaceInputSpec):
in_file = File(exists=True, mandatory=True)
script_file = File(exists=True, mandatory=True)
class BrainVolumeMATLABOutputSpec(TraitedSpec):
volume = traits.Int(desc='brain volume')
class BrainVolumeMATLAB(BaseInterface):
input_spec = BrainVolumeMATLABInputSpec
output_spec = BrainVolumeMATLABOutputSpec
Now, we have to specify what should happen, once the interface is run. As we said earlier, we want to:
This all can be implemented with the following code:
# Specify the interface inputs
in_file = '/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz'
script_file = '/home/neuro/nipype_tutorial/notebooks/scripts/brainvolume.m'
!cat scripts/brainvolume.m
import re
import nibabel as nb
from scipy.io import savemat
# 1. save the image in matlab format as tmp_image.mat
tmp_image = 'tmp_image'
data = nb.load(in_file).get_data()
savemat(tmp_image, {b'data': data}, do_compression=False)
# 2. load script
with open(script_file) as script_file:
script_content = script_file.read()
# 3. replace the input_image.mat file with the actual input of this interface
with open('newscript.m', 'w') as script_file:
script_file.write(script_content.replace('input_image.mat', 'tmp_image.mat'))
# 4. run the matlab script
mlab = CommandLine('octave', args='newscript.m', terminal_output='stream')
result = mlab.run()
# 5. extract the volume estimation from the output
expr_tra = re.compile('total\ =\s+(?P<total>[0-9]+)')
volume = int(expr_tra.search(result.runtime.stdout).groupdict()['total'])
print(volume)
Now we just need to put this all together in the _run_interface()
method and add a _list_outputs()
function:
from nipype.interfaces.base import (CommandLine, traits, TraitedSpec,
BaseInterface, BaseInterfaceInputSpec, File)
import re
import nibabel as nb
from scipy.io import savemat
class BrainVolumeMATLABInputSpec(BaseInterfaceInputSpec):
in_file = File(exists=True, mandatory=True)
script_file = File(exists=True, mandatory=True)
class BrainVolumeMATLABOutputSpec(TraitedSpec):
volume = traits.Int(desc='brain volume')
class BrainVolumeMATLAB(BaseInterface):
input_spec = BrainVolumeMATLABInputSpec
output_spec = BrainVolumeMATLABOutputSpec
def _run_interface(self, runtime):
# Save the image in matlab format as tmp_image.mat
tmp_image = 'tmp_image'
data = nb.load(self.inputs.in_file).get_data()
savemat(tmp_image, {b'data': data}, do_compression=False)
# Load script
with open(self.inputs.script_file) as script_file:
script_content = script_file.read()
# Replace the input_image.mat file for the actual input of this interface
with open('newscript.m', 'w') as script_file:
script_file.write(script_content.replace('input_image.mat', 'tmp_image.mat'))
# Run a matlab command
mlab = CommandLine('octave', args='newscript.m', terminal_output='stream')
result = mlab.run()
expr_tra = re.compile('total\ =\s+(?P<total>[0-9]+)')
volume = int(expr_tra.search(result.runtime.stdout).groupdict()['total'])
setattr(self, '_result', volume)
return result.runtime
def _list_outputs(self):
outputs = self._outputs().get()
outputs['volume'] = getattr(self, '_result')
return outputs
Let's test it:
matlab = BrainVolumeMATLAB(in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz',
script_file='/home/neuro/nipype_tutorial/notebooks/scripts/brainvolume.m')
result = matlab.run()
print(result.outputs)
We see in the example above that everything works fine. But now, let's say that we want to save the total brain volume to a file and give the location of this file back as an output. How would you do that?
Modify the BrainVolumeMATLAB
interface so that it has one more output called out_file
, that points to a text file where we write the volume in voxels. The name of the out_file
can be hard coded to volume.txt
.
# Write your solution here
from nipype.interfaces.base import (CommandLine, traits, TraitedSpec,
BaseInterface, BaseInterfaceInputSpec, File)
import os
import re
import nibabel as nb
from scipy.io import savemat
class BrainVolumeMATLABInputSpec(BaseInterfaceInputSpec):
in_file = File(exists=True, mandatory=True)
script_file = File(exists=True, mandatory=True)
class BrainVolumeMATLABOutputSpec(TraitedSpec):
volume = traits.Int(desc='brain volume')
out_file = File(desc='output file containing total brain volume') # This line was added
class BrainVolumeMATLAB(BaseInterface):
input_spec = BrainVolumeMATLABInputSpec
output_spec = BrainVolumeMATLABOutputSpec
def _run_interface(self, runtime):
# Save the image in matlab format as tmp_image.mat
tmp_image = 'tmp_image'
data = nb.load(self.inputs.in_file).get_data()
savemat(tmp_image, {b'data': data}, do_compression=False)
# Load script
with open(self.inputs.script_file) as script_file:
script_content = script_file.read()
# Replace the input_image.mat file for the actual input of this interface
with open('newscript.m', 'w') as script_file:
script_file.write(script_content.replace('input_image.mat', 'tmp_image.mat'))
# Run a matlab command
mlab = CommandLine('octave', args='newscript.m', terminal_output='stream')
result = mlab.run()
expr_tra = re.compile('total\ =\s+(?P<total>[0-9]+)')
volume = int(expr_tra.search(result.runtime.stdout).groupdict()['total'])
setattr(self, '_result', volume)
# Write total brain volume into a file
out_fname = os.path.abspath('volume.txt')
setattr(self, '_out_file', out_fname)
with open('volume.txt', 'w') as out_file:
out_file.write('%d' %volume)
return result.runtime
def _list_outputs(self):
outputs = self._outputs().get()
outputs['volume'] = getattr(self, '_result')
outputs['out_file'] = getattr(self, '_out_file')
return outputs
Now, let's test if it works.
matlab = BrainVolumeMATLAB(in_file='/data/ds000114/sub-01/ses-test/anat/sub-01_ses-test_T1w.nii.gz',
script_file='/home/neuro/nipype_tutorial/notebooks/scripts/brainvolume.m')
result = matlab.run()
No errors, perfect. Did we get the right file?
print(result.outputs.out_file)
And what about the content of this file?
!cat volume.txt