interfaces.niftyreg.regutils¶
RegAverage¶
Wraps command reg_average
Interface for executable reg_average from NiftyReg platform.
Compute average matrix or image from a list of matrices or image. The tool can be use to resample images given input transformation parametrisation as well as to demean transformations in Euclidean or log-Euclidean space.
This interface is different than the others in the way that the options will be written in a command file that is given as a parameter.
Examples¶
>>> from nipype.interfaces import niftyreg
>>> node = niftyreg.RegAverage()
>>> one_file = 'im1.nii'
>>> two_file = 'im2.nii'
>>> three_file = 'im3.nii'
>>> node.inputs.avg_files = [one_file, two_file, three_file]
>>> node.cmdline # doctest: +ELLIPSIS
'reg_average --cmd_file .../reg_average_cmd'
Inputs:
[Mandatory]
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
avg_files: (a list of items which are a file name)
Averaging of images/affine transformations
flag: -avg %s, position: 1
mutually_exclusive: avg_lts_files, avg_ref_file, demean1_ref_file,
demean2_ref_file, demean3_ref_file, warp_files
avg_lts_files: (a list of items which are a file name)
Robust average of affine transformations
flag: -avg_lts %s, position: 1
mutually_exclusive: avg_files, avg_ref_file, demean1_ref_file,
demean2_ref_file, demean3_ref_file, warp_files
avg_ref_file: (a file name)
All input images are resampled into the space of <reference image>
and averaged. A cubic spline interpolation scheme is used for
resampling
flag: -avg_tran %s, position: 1
mutually_exclusive: avg_files, avg_lts_files, demean1_ref_file,
demean2_ref_file, demean3_ref_file
requires: warp_files
demean1_ref_file: (a file name)
Average images and demean average image that have affine
transformations to a common space
flag: -demean1 %s, position: 1
mutually_exclusive: avg_files, avg_lts_files, avg_ref_file,
demean2_ref_file, demean3_ref_file
requires: warp_files
demean2_ref_file: (a file name)
Average images and demean average image that have non-rigid
transformations to a common space
flag: -demean2 %s, position: 1
mutually_exclusive: avg_files, avg_lts_files, avg_ref_file,
demean1_ref_file, demean3_ref_file
requires: warp_files
demean3_ref_file: (a file name)
Average images and demean average image that have linear and non-
rigid transformations to a common space
flag: -demean3 %s, position: 1
mutually_exclusive: avg_files, avg_lts_files, avg_ref_file,
demean1_ref_file, demean2_ref_file
requires: warp_files
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
omp_core_val: (an integer (int or long), nipype default value: 1)
Number of openmp thread to use
flag: -omp %i
out_file: (a file name)
Output file name
flag: %s, position: 0
warp_files: (a list of items which are a file name)
transformation files and floating image pairs/triplets to the
reference space
flag: %s, position: -1
mutually_exclusive: avg_files, avg_lts_files
Outputs:
out_file: (a file name)
Output file name
RegJacobian¶
Wraps command reg_jacobian
Interface for executable reg_resample from NiftyReg platform.
Tool to generate Jacobian determinant maps from transformation parametrisation generated by reg_f3d
Examples¶
>>> from nipype.interfaces import niftyreg
>>> node = niftyreg.RegJacobian()
>>> node.inputs.ref_file = 'im1.nii'
>>> node.inputs.trans_file = 'warpfield.nii'
>>> node.inputs.omp_core_val = 4
>>> node.cmdline
'reg_jacobian -omp 4 -ref im1.nii -trans warpfield.nii -jac warpfield_jac.nii.gz'
Inputs:
[Mandatory]
trans_file: (an existing file name)
The input non-rigid transformation
flag: -trans %s
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
omp_core_val: (an integer (int or long), nipype default value: 1)
Number of openmp thread to use
flag: -omp %i
out_file: (a file name)
The output jacobian determinant file name
flag: %s, position: -1
ref_file: (an existing file name)
Reference/target file (required if specifying CPP transformations.
flag: -ref %s
type: ('jac' or 'jacL' or 'jacM', nipype default value: jac)
Type of jacobian outcome
flag: -%s, position: -2
Outputs:
out_file: (a file name)
The output file
RegMeasure¶
Wraps command reg_measure
Interface for executable reg_measure from NiftyReg platform.
Given two input images, compute the specified measure(s) of similarity
Examples¶
>>> from nipype.interfaces import niftyreg
>>> node = niftyreg.RegMeasure()
>>> node.inputs.ref_file = 'im1.nii'
>>> node.inputs.flo_file = 'im2.nii'
>>> node.inputs.measure_type = 'lncc'
>>> node.inputs.omp_core_val = 4
>>> node.cmdline
'reg_measure -flo im2.nii -lncc -omp 4 -out im2_lncc.txt -ref im1.nii'
Inputs:
[Mandatory]
flo_file: (an existing file name)
The input floating/source image
flag: -flo %s
measure_type: ('ncc' or 'lncc' or 'nmi' or 'ssd')
Measure of similarity to compute
flag: -%s
ref_file: (an existing file name)
The input reference/target image
flag: -ref %s
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
omp_core_val: (an integer (int or long), nipype default value: 1)
Number of openmp thread to use
flag: -omp %i
out_file: (a file name)
The output text file containing the measure
flag: -out %s
Outputs:
out_file: (a file name)
The output text file containing the measure
RegResample¶
Wraps command reg_resample
Interface for executable reg_resample from NiftyReg platform.
Tool to resample floating image in the space of a defined reference image given a transformation parametrisation generated by reg_aladin, reg_f3d or reg_transform
Examples¶
>>> from nipype.interfaces import niftyreg
>>> node = niftyreg.RegResample()
>>> node.inputs.ref_file = 'im1.nii'
>>> node.inputs.flo_file = 'im2.nii'
>>> node.inputs.trans_file = 'warpfield.nii'
>>> node.inputs.inter_val = 'LIN'
>>> node.inputs.omp_core_val = 4
>>> node.cmdline
'reg_resample -flo im2.nii -inter 1 -omp 4 -ref im1.nii -trans warpfield.nii -res im2_res.nii.gz'
Inputs:
[Mandatory]
flo_file: (an existing file name)
The input floating/source image
flag: -flo %s
ref_file: (an existing file name)
The input reference/target image
flag: -ref %s
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
inter_val: ('NN' or 'LIN' or 'CUB' or 'SINC')
Interpolation type
flag: -inter %d
omp_core_val: (an integer (int or long), nipype default value: 1)
Number of openmp thread to use
flag: -omp %i
out_file: (a file name)
The output filename of the transformed image
flag: %s, position: -1
pad_val: (a float)
Padding value
flag: -pad %f
psf_alg: (0 or 1)
Minimise the matrix metric (0) or the determinant (1) when
estimating the PSF [0]
flag: -psf_alg %d
psf_flag: (a boolean)
Perform the resampling in two steps to resample an image to a lower
resolution
flag: -psf
tensor_flag: (a boolean)
Resample Tensor Map
flag: -tensor
trans_file: (an existing file name)
The input transformation file
flag: -trans %s
type: ('res' or 'blank', nipype default value: res)
Type of output
flag: -%s, position: -2
verbosity_off_flag: (a boolean)
Turn off verbose output
flag: -voff
Outputs:
out_file: (a file name)
The output filename of the transformed image
RegTools¶
Wraps command reg_tools
Interface for executable reg_tools from NiftyReg platform.
Tool delivering various actions related to registration such as resampling the input image to a chosen resolution or remove the nan and inf in the input image by a specified value.
Examples¶
>>> from nipype.interfaces import niftyreg
>>> node = niftyreg.RegTools()
>>> node.inputs.in_file = 'im1.nii'
>>> node.inputs.mul_val = 4
>>> node.inputs.omp_core_val = 4
>>> node.cmdline
'reg_tools -in im1.nii -mul 4.0 -omp 4 -out im1_tools.nii.gz'
Inputs:
[Mandatory]
in_file: (an existing file name)
The input image file path
flag: -in %s
[Optional]
add_val: (a float or an existing file name)
Add to the input image or value
flag: -add %s
args: (a unicode string)
Additional parameters to the command
flag: %s
bin_flag: (a boolean)
Binarise the input image
flag: -bin
chg_res_val: (a tuple of the form: (a float, a float, a float))
Change the resolution of the input image
flag: -chgres %f %f %f
div_val: (a float or an existing file name)
Divide the input by image or value
flag: -div %s
down_flag: (a boolean)
Downsample the image by a factor of 2
flag: -down
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
inter_val: ('NN' or 'LIN' or 'CUB' or 'SINC')
Interpolation order to use to warp the floating image
flag: -interp %d
iso_flag: (a boolean)
Make output image isotropic
flag: -iso
mask_file: (an existing file name)
Values outside the mask are set to NaN
flag: -nan %s
mul_val: (a float or an existing file name)
Multiply the input by image or value
flag: -mul %s
noscl_flag: (a boolean)
Set scale, slope to 0 and 1
flag: -noscl
omp_core_val: (an integer (int or long), nipype default value: 1)
Number of openmp thread to use
flag: -omp %i
out_file: (a file name)
The output file name
flag: -out %s
rms_val: (an existing file name)
Compute the mean RMS between the images
flag: -rms %s
smo_g_val: (a tuple of the form: (a float, a float, a float))
Smooth the input image using a Gaussian kernel
flag: -smoG %f %f %f
smo_s_val: (a tuple of the form: (a float, a float, a float))
Smooth the input image using a cubic spline kernel
flag: -smoS %f %f %f
sub_val: (a float or an existing file name)
Add to the input image or value
flag: -sub %s
thr_val: (a float)
Binarise the input image with the given threshold
flag: -thr %f
Outputs:
out_file: (an existing file name)
The output file
RegTransform¶
Wraps command reg_transform
Interface for executable reg_transform from NiftyReg platform.
Tools to convert transformation parametrisation from one type to another as well as to compose, inverse or half transformations.
Examples¶
>>> from nipype.interfaces import niftyreg
>>> node = niftyreg.RegTransform()
>>> node.inputs.def_input = 'warpfield.nii'
>>> node.inputs.omp_core_val = 4
>>> node.cmdline # doctest: +ELLIPSIS
'reg_transform -omp 4 -def warpfield.nii .../warpfield_trans.nii.gz'
Inputs:
[Mandatory]
[Optional]
aff_2_rig_input: (an existing file name)
Extract the rigid component from affine transformation
flag: -aff2rig %s, position: -2
mutually_exclusive: def_input, disp_input, flow_input, comp_input,
upd_s_form_input, inv_aff_input, inv_nrr_input, half_input,
make_aff_input, flirt_2_nr_input
args: (a unicode string)
Additional parameters to the command
flag: %s
comp_input: (an existing file name)
compose two transformations
flag: -comp %s, position: -3
mutually_exclusive: def_input, disp_input, flow_input,
upd_s_form_input, inv_aff_input, inv_nrr_input, half_input,
make_aff_input, aff_2_rig_input, flirt_2_nr_input
requires: comp_input2
comp_input2: (an existing file name)
compose two transformations
flag: %s, position: -2
def_input: (an existing file name)
Compute deformation field from transformation
flag: -def %s, position: -2
mutually_exclusive: disp_input, flow_input, comp_input,
upd_s_form_input, inv_aff_input, inv_nrr_input, half_input,
make_aff_input, aff_2_rig_input, flirt_2_nr_input
disp_input: (an existing file name)
Compute displacement field from transformation
flag: -disp %s, position: -2
mutually_exclusive: def_input, flow_input, comp_input,
upd_s_form_input, inv_aff_input, inv_nrr_input, half_input,
make_aff_input, aff_2_rig_input, flirt_2_nr_input
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
flirt_2_nr_input: (a tuple of the form: (an existing file name, an
existing file name, an existing file name))
Convert a FLIRT affine transformation to niftyreg affine
transformation
flag: -flirtAff2NR %s %s %s, position: -2
mutually_exclusive: def_input, disp_input, flow_input, comp_input,
upd_s_form_input, inv_aff_input, inv_nrr_input, half_input,
make_aff_input, aff_2_rig_input
flow_input: (an existing file name)
Compute flow field from spline SVF
flag: -flow %s, position: -2
mutually_exclusive: def_input, disp_input, comp_input,
upd_s_form_input, inv_aff_input, inv_nrr_input, half_input,
make_aff_input, aff_2_rig_input, flirt_2_nr_input
half_input: (an existing file name)
Half way to the input transformation
flag: -half %s, position: -2
mutually_exclusive: def_input, disp_input, flow_input, comp_input,
upd_s_form_input, inv_aff_input, inv_nrr_input, make_aff_input,
aff_2_rig_input, flirt_2_nr_input
inv_aff_input: (an existing file name)
Invert an affine transformation
flag: -invAff %s, position: -2
mutually_exclusive: def_input, disp_input, flow_input, comp_input,
upd_s_form_input, inv_nrr_input, half_input, make_aff_input,
aff_2_rig_input, flirt_2_nr_input
inv_nrr_input: (a tuple of the form: (an existing file name, an
existing file name))
Invert a non-linear transformation
flag: -invNrr %s %s, position: -2
mutually_exclusive: def_input, disp_input, flow_input, comp_input,
upd_s_form_input, inv_aff_input, half_input, make_aff_input,
aff_2_rig_input, flirt_2_nr_input
make_aff_input: (a tuple of the form: (a float, a float, a float, a
float, a float, a float, a float, a float, a float, a float, a
float, a float))
Make an affine transformation matrix
flag: -makeAff %f %f %f %f %f %f %f %f %f %f %f %f, position: -2
mutually_exclusive: def_input, disp_input, flow_input, comp_input,
upd_s_form_input, inv_aff_input, inv_nrr_input, half_input,
aff_2_rig_input, flirt_2_nr_input
omp_core_val: (an integer (int or long), nipype default value: 1)
Number of openmp thread to use
flag: -omp %i
out_file: (a file name)
transformation file to write
flag: %s, position: -1
ref1_file: (an existing file name)
The input reference/target image
flag: -ref %s, position: 0
ref2_file: (an existing file name)
The input second reference/target image
flag: -ref2 %s, position: 1
requires: ref1_file
upd_s_form_input: (an existing file name)
Update s-form using the affine transformation
flag: -updSform %s, position: -3
mutually_exclusive: def_input, disp_input, flow_input, comp_input,
inv_aff_input, inv_nrr_input, half_input, make_aff_input,
aff_2_rig_input, flirt_2_nr_input
requires: upd_s_form_input2
upd_s_form_input2: (an existing file name)
Update s-form using the affine transformation
flag: %s, position: -2
requires: upd_s_form_input
Outputs:
out_file: (a file name)
Output File (transformation in any format)