interfaces.fsl.maths¶
AR1Image¶
Wraps command fslmaths
Use fslmaths to generate an AR1 coefficient image across a given dimension. (Should use -odt float and probably demean first)
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
dimension: ('T' or 'X' or 'Y' or 'Z', nipype default value: T)
dimension to find AR(1) coefficientacross
flag: -%sar1, position: 4
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
ApplyMask¶
Wraps command fslmaths
Use fslmaths to apply a binary mask to another image.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
mask_file: (an existing file name)
binary image defining mask space
flag: -mas %s, position: 4
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
BinaryMaths¶
Wraps command fslmaths
Use fslmaths to perform mathematical operations using a second image or a numeric value.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
operand_file: (an existing file name)
second image to perform operation with
flag: %s, position: 5
mutually_exclusive: operand_value
operand_value: (a float)
value to perform operation with
flag: %.8f, position: 5
mutually_exclusive: operand_file
operation: ('add' or 'sub' or 'mul' or 'div' or 'rem' or 'max' or
'min')
operation to perform
flag: -%s, position: 4
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
ChangeDataType¶
Wraps command fslmaths
Use fslmaths to change the datatype of an image.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
output data type
flag: -odt %s, position: -1
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
DilateImage¶
Wraps command fslmaths
Use fslmaths to perform a spatial dilation of an image.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
operation: ('mean' or 'modal' or 'max')
filtering operation to perfoem in dilation
flag: -dil%s, position: 6
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
kernel_file: (an existing file name)
use external file for kernel
flag: %s, position: 5
mutually_exclusive: kernel_size
kernel_shape: ('3D' or '2D' or 'box' or 'boxv' or 'gauss' or 'sphere'
or 'file')
kernel shape to use
flag: -kernel %s, position: 4
kernel_size: (a float)
kernel size - voxels for box/boxv, mm for sphere, mm sigma for gauss
flag: %.4f, position: 5
mutually_exclusive: kernel_file
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
ErodeImage¶
Wraps command fslmaths
Use fslmaths to perform a spatial erosion of an image.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
kernel_file: (an existing file name)
use external file for kernel
flag: %s, position: 5
mutually_exclusive: kernel_size
kernel_shape: ('3D' or '2D' or 'box' or 'boxv' or 'gauss' or 'sphere'
or 'file')
kernel shape to use
flag: -kernel %s, position: 4
kernel_size: (a float)
kernel size - voxels for box/boxv, mm for sphere, mm sigma for gauss
flag: %.4f, position: 5
mutually_exclusive: kernel_file
minimum_filter: (a boolean, nipype default value: False)
if true, minimum filter rather than erosion by zeroing-out
flag: %s, position: 6
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
IsotropicSmooth¶
Wraps command fslmaths
Use fslmaths to spatially smooth an image with a gaussian kernel.
Inputs:
[Mandatory]
fwhm: (a float)
fwhm of smoothing kernel [mm]
flag: -s %.5f, position: 4
mutually_exclusive: sigma
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
sigma: (a float)
sigma of smoothing kernel [mm]
flag: -s %.5f, position: 4
mutually_exclusive: fwhm
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
MathsCommand¶
Wraps command fslmaths
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
MaxImage¶
Wraps command fslmaths
Use fslmaths to generate a max image across a given dimension.
Examples¶
>>> from nipype.interfaces.fsl.maths import MaxImage
>>> maxer = MaxImage()
>>> maxer.inputs.in_file = "functional.nii" # doctest: +SKIP
>>> maxer.dimension = "T"
>>> maxer.cmdline # doctest: +SKIP
'fslmaths functional.nii -Tmax functional_max.nii'
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
dimension: ('T' or 'X' or 'Y' or 'Z', nipype default value: T)
dimension to max across
flag: -%smax, position: 4
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
MaxnImage¶
Wraps command fslmaths
Use fslmaths to generate an image of index of max across a given dimension.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
dimension: ('T' or 'X' or 'Y' or 'Z', nipype default value: T)
dimension to index max across
flag: -%smaxn, position: 4
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
MeanImage¶
Wraps command fslmaths
Use fslmaths to generate a mean image across a given dimension.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
dimension: ('T' or 'X' or 'Y' or 'Z', nipype default value: T)
dimension to mean across
flag: -%smean, position: 4
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
MedianImage¶
Wraps command fslmaths
Use fslmaths to generate a median image across a given dimension.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
dimension: ('T' or 'X' or 'Y' or 'Z', nipype default value: T)
dimension to median across
flag: -%smedian, position: 4
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
MinImage¶
Wraps command fslmaths
Use fslmaths to generate a minimum image across a given dimension.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
dimension: ('T' or 'X' or 'Y' or 'Z', nipype default value: T)
dimension to min across
flag: -%smin, position: 4
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
MultiImageMaths¶
Wraps command fslmaths
Use fslmaths to perform a sequence of mathematical operations.
Examples¶
>>> from nipype.interfaces.fsl import MultiImageMaths
>>> maths = MultiImageMaths()
>>> maths.inputs.in_file = "functional.nii"
>>> maths.inputs.op_string = "-add %s -mul -1 -div %s"
>>> maths.inputs.operand_files = ["functional2.nii", "functional3.nii"]
>>> maths.inputs.out_file = "functional4.nii"
>>> maths.cmdline
'fslmaths functional.nii -add functional2.nii -mul -1 -div functional3.nii functional4.nii'
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
op_string: (a string)
python formatted string of operations to perform
flag: %s, position: 4
operand_files: (a list of items which are an existing file name)
list of file names to plug into op string
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
PercentileImage¶
Wraps command fslmaths
Use fslmaths to generate a percentile image across a given dimension.
Examples¶
>>> from nipype.interfaces.fsl.maths import MaxImage
>>> percer = PercentileImage()
>>> percer.inputs.in_file = "functional.nii" # doctest: +SKIP
>>> percer.dimension = "T"
>>> percer.perc = 90
>>> percer.cmdline # doctest: +SKIP
'fslmaths functional.nii -Tperc 90 functional_perc.nii'
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
dimension: ('T' or 'X' or 'Y' or 'Z', nipype default value: T)
dimension to percentile across
flag: -%sperc, position: 4
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
perc: (0 <= a long integer <= 100)
nth percentile (0-100) of FULL RANGE across dimension
flag: %f, position: 5
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
SpatialFilter¶
Wraps command fslmaths
Use fslmaths to spatially filter an image.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
operation: ('mean' or 'median' or 'meanu')
operation to filter with
flag: -f%s, position: 6
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
kernel_file: (an existing file name)
use external file for kernel
flag: %s, position: 5
mutually_exclusive: kernel_size
kernel_shape: ('3D' or '2D' or 'box' or 'boxv' or 'gauss' or 'sphere'
or 'file')
kernel shape to use
flag: -kernel %s, position: 4
kernel_size: (a float)
kernel size - voxels for box/boxv, mm for sphere, mm sigma for gauss
flag: %.4f, position: 5
mutually_exclusive: kernel_file
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
StdImage¶
Wraps command fslmaths
Use fslmaths to generate a standard deviation in an image across a given dimension.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
dimension: ('T' or 'X' or 'Y' or 'Z', nipype default value: T)
dimension to standard deviate across
flag: -%sstd, position: 4
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
TemporalFilter¶
Wraps command fslmaths
Use fslmaths to apply a low, high, or bandpass temporal filter to a timeseries.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
highpass_sigma: (a float, nipype default value: -1)
highpass filter sigma (in volumes)
flag: -bptf %.6f, position: 4
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
lowpass_sigma: (a float, nipype default value: -1)
lowpass filter sigma (in volumes)
flag: %.6f, position: 5
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
Threshold¶
Wraps command fslmaths
Use fslmaths to apply a threshold to an image in a variety of ways.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
thresh: (a float)
threshold value
flag: %s, position: 4
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
direction: ('below' or 'above', nipype default value: below)
zero-out either below or above thresh value
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
use_nonzero_voxels: (a boolean)
use nonzero voxels to calculate robust range
requires: use_robust_range
use_robust_range: (a boolean)
interpret thresh as percentage (0-100) of robust range
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)
UnaryMaths¶
Wraps command fslmaths
Use fslmaths to perorm a variety of mathematical operations on an image.
Inputs:
[Mandatory]
in_file: (an existing file name)
image to operate on
flag: %s, position: 2
operation: ('exp' or 'log' or 'sin' or 'cos' or 'tan' or 'asin' or
'acos' or 'atan' or 'sqr' or 'sqrt' or 'recip' or 'abs' or 'bin' or
'binv' or 'fillh' or 'fillh26' or 'index' or 'edge' or 'nan' or
'nanm' or 'rand' or 'randn' or 'range')
operation to perform
flag: -%s, position: 4
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
internal_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for calculations (default is float)
flag: -dt %s, position: 1
nan2zeros: (a boolean)
change NaNs to zeros before doing anything
flag: -nan, position: 3
out_file: (a file name)
image to write
flag: %s, position: -2
output_datatype: ('float' or 'char' or 'int' or 'short' or 'double'
or 'input')
datatype to use for output (default uses input type)
flag: -odt %s, position: -1
output_type: ('NIFTI' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
'NIFTI_PAIR_GZ')
FSL output type
Outputs:
out_file: (an existing file name)
image written after calculations
References:: BibTeX(‘@article{JenkinsonBeckmannBehrensWoolrichSmith2012,author={M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, and S.M. Smith},title={FSL},journal={NeuroImage},volume={62},pages={782-790},year={2012},}’, key=’JenkinsonBeckmannBehrensWoolrichSmith2012’)