interfaces.afni.svm¶
SVMTest¶
Wraps command 3dsvm
Temporally predictive modeling with the support vector machine SVM Test Only For complete details, see the 3dsvm Documentation.
Examples¶
>>> from nipype.interfaces import afni as afni
>>> svmTest = afni.SVMTest()
>>> svmTest.inputs.in_file= 'run2+orig'
>>> svmTest.inputs.model= 'run1+orig_model'
>>> svmTest.inputs.testlabels= 'run2_categories.1D'
>>> svmTest.inputs.out_file= 'pred2_model1'
>>> res = svmTest.run() # doctest: +SKIP
Inputs:
[Mandatory]
in_file: (an existing file name)
A 3D or 3D+t AFNI brik dataset to be used for testing.
flag: -testvol %s
model: (a unicode string)
modname is the basename for the brik containing the SVM model
flag: -model %s
[Optional]
args: (a unicode string)
Additional parameters to the command
flag: %s
classout: (a boolean)
Flag to specify that pname files should be integer-valued,
corresponding to class category decisions.
flag: -classout
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
multiclass: (a boolean)
Specifies multiclass algorithm for classification
flag: -multiclass %s
nodetrend: (a boolean)
Flag to specify that pname files should not be linearly detrended
flag: -nodetrend
nopredcensord: (a boolean)
Flag to prevent writing predicted values for censored time-points
flag: -nopredcensord
num_threads: (an integer (int or long), nipype default value: 1)
set number of threads
options: (a unicode string)
additional options for SVM-light
flag: %s
out_file: (a file name)
filename for .1D prediction file(s).
flag: -predictions %s
outputtype: ('NIFTI' or 'AFNI' or 'NIFTI_GZ')
AFNI output filetype
testlabels: (an existing file name)
*true* class category .1D labels for the test dataset. It is used to
calculate the prediction accuracy performance
flag: -testlabels %s
Outputs:
out_file: (an existing file name)
output file
References:: BibTeX(‘@article{Cox1996,author={R.W. Cox},title={AFNI: software for analysis and visualization of functional magnetic resonance neuroimages},journal={Computers and Biomedical research},volume={29},number={3},pages={162-173},year={1996},}’, key=’Cox1996’) BibTeX(‘@article{CoxHyde1997,author={R.W. Cox and J.S. Hyde},title={Software tools for analysis and visualization of fMRI data},journal={NMR in Biomedicine},volume={10},number={45},pages={171-178},year={1997},}’, key=’CoxHyde1997’)
SVMTrain¶
Wraps command 3dsvm
Temporally predictive modeling with the support vector machine SVM Train Only For complete details, see the 3dsvm Documentation.
Examples¶
>>> from nipype.interfaces import afni as afni
>>> svmTrain = afni.SVMTrain()
>>> svmTrain.inputs.in_file = 'run1+orig'
>>> svmTrain.inputs.trainlabels = 'run1_categories.1D'
>>> svmTrain.inputs.ttype = 'regression'
>>> svmTrain.inputs.mask = 'mask.nii'
>>> svmTrain.inputs.model = 'model_run1'
>>> svmTrain.inputs.alphas = 'alphas_run1'
>>> res = svmTrain.run() # doctest: +SKIP
Inputs:
[Mandatory]
in_file: (an existing file name)
A 3D+t AFNI brik dataset to be used for training.
flag: -trainvol %s
ttype: (a unicode string)
tname: classification or regression
flag: -type %s
[Optional]
alphas: (a file name)
output alphas file name
flag: -alpha %s
args: (a unicode string)
Additional parameters to the command
flag: %s
censor: (an existing file name)
.1D censor file that allows the user to ignore certain samples in
the training data.
flag: -censor %s
environ: (a dictionary with keys which are a bytes or None or a value
of class 'str' and with values which are a bytes or None or a value
of class 'str', nipype default value: {})
Environment variables
kernel: (a unicode string)
string specifying type of kernel function:linear, polynomial, rbf,
sigmoid
flag: -kernel %s
mask: (an existing file name)
byte-format brik file used to mask voxels in the analysis
flag: -mask %s, position: -1
max_iterations: (an integer (int or long))
Specify the maximum number of iterations for the optimization.
flag: -max_iterations %d
model: (a file name)
basename for the brik containing the SVM model
flag: -model %s
nomodelmask: (a boolean)
Flag to enable the omission of a mask file
flag: -nomodelmask
num_threads: (an integer (int or long), nipype default value: 1)
set number of threads
options: (a unicode string)
additional options for SVM-light
flag: %s
out_file: (a file name)
output sum of weighted linear support vectors file name
flag: -bucket %s
outputtype: ('NIFTI' or 'AFNI' or 'NIFTI_GZ')
AFNI output filetype
trainlabels: (an existing file name)
.1D labels corresponding to the stimulus paradigm for the training
data.
flag: -trainlabels %s
w_out: (a boolean)
output sum of weighted linear support vectors
flag: -wout
Outputs:
alphas: (a file name)
output alphas file name
model: (a file name)
brik containing the SVM model file name
out_file: (a file name)
sum of weighted linear support vectors file name
References:: BibTeX(‘@article{Cox1996,author={R.W. Cox},title={AFNI: software for analysis and visualization of functional magnetic resonance neuroimages},journal={Computers and Biomedical research},volume={29},number={3},pages={162-173},year={1996},}’, key=’Cox1996’) BibTeX(‘@article{CoxHyde1997,author={R.W. Cox and J.S. Hyde},title={Software tools for analysis and visualization of fMRI data},journal={NMR in Biomedicine},volume={10},number={45},pages={171-178},year={1997},}’, key=’CoxHyde1997’)